However, initial deployments are unlikely to meet the ITU’s exact specifications and in fact, the Olympic demonstration for instance does not technically qualify as 5G by the ITU’s full standards. Early trial runs such as at the Olympics are using a competing specification that has been picked up by a few operators but has not been adopted as the global standard, according to Sherif Hanna of Qualcomm.

Like the transition from 3G to 4G, the move from 4G to 5G has a lot of moving parts. It will involve the merging of new infrastructure with all existing wireless technologies including Wi-Fi (as well as WiGig and Li-Fi for that matter), all of which will play a critical role in bringing high-speed 5G connectivity to the IoT ecosystem. For the time being, global device makers have thrown their weight behind Qualcomm’s X50 modem, including LG, HTC, Oppo, Vivo, Xiaomi and the startup behind Nokia-branded phones. All told, 18 carriers around the world will begin 5G interoperability trials this year using Qualcomm’s X50 modem and phone reference designs in both the sub-6GHz and millimeter wave (mmWave) spectrum bands. Those carriers include AT&T, British Telecom, China Telecom, China Mobile, China Unicom, Deutsche Telekom, KDDI, KT, LG U+, NTT Docomo, Orange, Singtel, SK Telecom, Sprint, Telstra, TIM, Verizon, and Vodafone Group.

Expanding 5G to Millimeter Waves

Being that current wireless sub-6GHz signals offer better propagation and backward compatibility, and the fact that many IoT devices won’t call for the additional performance of millimeter waves, companies are opting to gradually augment existing infrastructure to include these higher frequencies. Millimeter waves have greater speed capabilities because of their shorter signal wavelengths, broadcasting at much higher frequencies between 30GHz and 300GHz – a stark contrast to the current 3G and 4G signals that are broadcast below 6GHz.

Also: A high-res image of the FCC’s radio spectrum allocation (embedded below) They are called millimeter waves because they vary in length from 1mm to 10mm, compared to the tens of centimeters in length of the radio waves serving today’s smartphones. Given this shorter wavelength, mmWaves travel shorter distances and require direct line of site seeing as they cannot easily penetrate through buildings or obstacles and in fact, they can be absorbed by foliage or rain. The industry is looking to enhance traditional cellular towers with 5G-grade connectivity via devices such as “small cells,” which are shoebox-sized antennas that can be mounted unobtrusively to existing structures like utility poles and would be installed in 10 to 100 times more locations than existing 3G or 4G towers, blanketing neighborhoods with high frequency signal. An assortment of wireless technologies are being developed and deployed alongside mmWaves and small cells to help realize the demanding bandwidth and latency requirements of 5G, including beam forming (spatial beam focusing), massive MIMO (antenna arrays with dozens of transmitters and receivers), and full duplex (the ability to send and receive data at the same time over the same frequency). IEEE Spectrum’s primer on 5G does a good job of elaborating on these technologies – beware of the autoplay video, though it’s worth watching.

Another informative infographic: Small Cells - Market Trends and Adoptions As the industry looks for ways to expand current infrastructure with new technologies and spectrum, organizations have been working to overcome challenges involving spectrum allocation scarcities. DARPA for instance launched its SC2 Spectrum Collaboration Challenge to encourage competition toward creating autonomous spectrum sharing capabilities that would combine software-defined radios with artificial intelligence for the goal of developing collaborative intelligent radio networks that could dynamically share spectrum, allocating RF spectrum resources on demand in real time. This would end today’s static bandwidth licensing and fixed spectrum rules along with opening up additional room on the spectrum for future communication technologies. The ITU is likewise investigating machine learning and how it could help better manage 5G deployments.